Inconspicuous anterior implant-supported restorations: Combining clinical and laboratory expertise

By Dr. Larry R. Holt, USA

The ultimate goal of tooth replacement in the esthetic zone is an inconspicuous transition from dental restoration to the patient’s natural, biologic tissues. This transition is evaluated at many levels. Color and contour of gingiva at the interface must mimic the natural contours and color of adjacent and contralateral teeth.

The dental restoration must match contour and blend seamlessly into the existing dentition. Color matching of final crown must be consistent with existing dentition (hue, chroma and value). This case study explores the management and correction of a previously treated implant-retained maxillary central incisor.

The patient presented as a healthy, 48-year-old female with no contributory health history to prohibit dental treatment. Recent dental history revealed an Ankylos implant to replace tooth #9 that had been placed approximately five months prior to this visit. The implant had been uncovered and a temporary abutment was placed.

A ridge lap provisional restoration was fabricated to fit the coronal portion of the abutment. The resultant provisional was not only esthetic but also was the source of considerable tissue inflammation and patient discomfort (Figs. 1-3). Patient reported dissatisfaction with the provisional treatment and was seeking a more desirable solution.

Clinical evaluation revealed a well-placed implant with acceptable position both facio-lingually and mesiodistally. Additionally, there was good volume of soft tissue and ridge form was ideal. Surgeon reported that the implant was well-integrated in bone. There was a poorly adapted provisional restoration over an inadequately contoured provisional abutment. Radiograph revealed excess acrylic that extended well into the dental sulcus all the way to the implant platform (Fig. 4). This acrylic did not provide any emergence profile support of transmucosal tissue.

The provisional restoration was poorly adapted to both the abutment and to the ridge crest soft tissue. Intaglio surface was rough and made in such a manner as to create a ridge lap profile. The facial and proximal surfaces of the provisional were fitted over soft-tissue crest. There had been no attempt to modify gingival tissue emergence profile or to create the environment for inconspicuous transition from restoration to biologic tissues.

Techniques for managing emergence profile are well-documented in the literature. Interproximal tissues will point and form papilla when appropriate lateral pressure is applied with a temporary abutment. When natural teeth are on either side of the implant. The adjacent bone height will dictate the level of the papilla assuming the restoration and its associated abutment properly support them. Facial contour can be manipulated to create appropriate gingival zenith height by increasing or decreasing facial emergence profile. Increasing the profile will move the gingival zenith apically and reduction of contour will move the crest incisally.

Treatment plan consisted of removal of temporary abutment/provisional crown, fabrication of a temporary partial denture (Figs. 5-6) and placement of an appropriate temporary abutment that did not retain a provisional crown (Ankylos sulcus former) (Fig. 7).

This sulcus former, as its name implies, would provide soft-tissue emergence profile support. The partial denture was to be placed to avoid interference with the sulcus former when fully seated (Fig. 8). Patient was to be recalled in one-week intervals to evaluate the response to this treatment. Once healed, a final, customised abutment and cementable all-ceramic crown would be delivered.

The plan was followed per previous description. Postoperative visits were uneventful. Patient comfort was immediate. Tissue health and emergence profile were deemed appropriate at the second week recall visit (Figs. 9, 10).

At a subsequent appointment, the sulkusforming abutment was removed, a closed tray impression coping was used and an impression (Identium, Kettenbach) was taken for fabrication of final restoration (Figs. 11-12). Appropriate opposing model, bite registrations and facebow accompanied the case to the laboratory.

A careful shade map and clinical photography were included.

Clinically, it was determined that this would be a difficult shade because of surface characteristics and marvenick colors of the adjacent central incisor. Arrangements were made to have a laboratory technician available at the delivery appointment.

Sulcus former and temporary partial were reinserted and patient was dismissed and scheduled for delivery appointment.

All model work was accomplished. The laboratory was given the option of fabricating a custom abutment or customising a stock abutment. This decision was to be based on the trajectory of the abutment relative to the position of the implant. The placement of the implant was ideal and the use of a lab-modified, stock abutment was selected (Cercon Balance Abutment, Dentsply Implant).

The contour correlation between the sulkus former and the emergence profile of the stock abutment complement one another. The margins were placed 1 mm subgingivally on facial, mesial and distal. The lingual margin was placed at 3 mm.

Once the abutment was perfected, an all-ceramic crown was fabricated (e.max, Ivoclar Viva). This crown was waxed to full contour, and then the facial was cut back to provide a field into which a customized facial surface could be developed from added porcelain. The wax pattern was invested and pressed. The resultant crown was then modified with additional application of the ceramic瓷 was left preglazed in anticipation of chairside staining (Figs. 13-14).
The delivery appointment was uneventful. The lab provided a seating jig that simplified the positioning of the customized abutment (Fig. 18). The abutment was torqued to manufacturer’s specifications (Figs. 16, 17).

The crown was tried in and adjustments were made to proximal contacts and to occlusion. A dental laboratory technician was enlisted to provide custom chairside staining to perfect the color match. Both patient and clinicians were satisfied with the result. The abutment interface with implant-supported systems must be as identical as possible to ensure longevity and biocompatibility. This could not have been accomplished without skilled hands and eyes of a technician at chairside.

Close communication and strong laboratory relationships, along with appropriate clinical understanding of soft-tissue management, leads to success. The incomplete trial crown could never have resulted if there was not strong support from the dental laboratory. Note: Dr. Holt would like to extend thanks to the exceptional team at Drake Precision Laboratories for providing all laboratory support for this case.

References

mCME Self Instruction Program
CAPPmea together with Dental Tribune provides the opportunity with its mCME - Self Instruction Program a quick and simple way to meet your continuing education needs. mCME offers you the flexibility to work at your own pace through the material from any location at any time. The content comes from experts in their field. Articles are available on www.cappmea.com after the publication and represent authoritative opinions about the questions concerned. The answers and critiques published herein have been checked carefully and represent the authors’ views.

Completion of mCME
Completion of mCME participants are required to read the continuing medical education (CME) article published in each issue. Each article offers 2 CME Credit and are followed by a quiz (Questionsnaire online: which is available on www.cappmea.com/ mCME/questnaires.html).

Each quiz has to be returned to events@cappmea.com or faxed to +971 4 3616174. A minimum passing score of 80% must be achieved in order to claim credit.

No more than two answered questions can be submitted at the same time.

Validity of the article – 3 months

Validity of the subscription – 1 year

Collection of Credit hours: You will receive the summary report (Credit Certificate) maximum 3 months after the expiry of your membership. For single subscription certificates and summary reports will be sent one month after the publication of the article.

The delivery appointment was uneventful. The lab provided a seating jig that simplified the positioning of the customized abutment (Fig. 18). The abutment was torqued to manufacturer’s specifications (Figs. 16, 17).

The crown was tried in and adjustments were made to proximal contacts and to occlusion. A dental laboratory technician was enlisted to provide custom chairside staining to perfect the color match. Both patient and clinicians were satisfied with the result. The abutment interface with implant-supported systems must be as identical as possible to ensure longevity and biocompatibility. This could not have been accomplished without skilled hands and eyes of a technician at chairside.

Close communication and strong laboratory relationships, along with appropriate clinical understanding of soft-tissue management, leads to success. The incomplete trial crown could never have resulted if there was not strong support from the dental laboratory. Note: Dr. Holt would like to extend thanks to the exceptional team at Drake Precision Laboratories for providing all laboratory support for this case.

References

Larry R. Hall, DDS, FICD, graduated from the UIC School of Dentistry in 1978. He was in private practice from 1978-2008. Since 2008, he has been the director of clinical education and research at Drake Precision Dental Laboratories in Charlotte, N.C.